- 3. (a) Define probability. Also explain laws of addition and multiplication.
 - (b) A problem in statistics is given to three students
 A, B and C whose chances of solving it are 1/3, 1/4 and 1/5 respectively. Find the probability that the problem will be solved if they all try independently.
- 4. (a) Define random variable. What is probability density function ?
 - (b) An unbiased coin is tossed 3 times. If a random variable 'X' is defined as number of heads; then find probability mass function of X.
 - (c) What do you mean by mathematical expectation ? Also discuss some important properties of mathematical expectation.
- 5. Define a binomial variate with parameters n and p and obtain its probability function. Also derive important properties of binomial distribution.
- 6. What is normal distribution ? Draw a rough sketch of its probability density function. Also derive its moment generating function.
- 7. (a) Distinguish between population and sample. Also discuss important features of a good sample.
 - (b) Write a note on the concept of standard error of estimates.
- 8. Distinguish between random and subjective sampling. What is simple random sampling ? Discuss its merits and limitations.

2

3150(2721)/II-5610

B.A./B.Sc. 4th Semester

QUANTITATIVE TECHNIQUES—IV

- Time Allowed—2 Hours] [Maximum Marks—100
- Note :— There are *eight* questions of equal marks. Candidates are required to attempt any *four* questions.
- 1. The following data relates to three variables X_1 , X_2 and X_3 ; obtain the equation of the plane of regression of X_1 on X_2 and X_3 . Also estimate value of X_1 when $X_2 = 15$ and $X_3 = 30$:

X ₁	4	6	7	9	13	15
X ₂	15	12	8	6	4	3
X ₃	30	24	20	14	10	4

- 2. (a) Differentiate between partial and multiple correlation coefficients.
 - (b) Discuss the procedure to estimate modified exponential curve.
 - (c) Fit exponential curve of type y = ab^x to the following data :

Х	1	2	3	4	5
у	1.6	4.5	13.8	40.2	125.0

(Contd.)